0%

Pytorch计算模型运算量的工具--torchstat

说明与安装

这个包可以计算出一个网络模型的参数量和运算量,甚至给出每一层的运算量,比如:

example

安装方法为:

1
pip install torchstat

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchstat import stat


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(56180, 50)
self.fc2 = nn.Linear(50, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 56180)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)


if __name__ == '__main__':
model = Net()
stat(model, (3, 224, 224))

然后在命令行输入

1
torchstat -f example.py -m Net

如果要更改输入图像的尺寸,只改example.py里的(3,224,224)没有起作用,于是我使用了-s选项:

1
torchstat -f example.py -m Net -s '3x32x32'

这里选项内容是用字符串表示的,‘x’就是字母x。

另一个示例

1
2
3
4
5
from torchstat import stat
import torchvision.models as models

model = models.resnet18()
stat(model, (3, 224, 224))

torchstat的Github